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FOREWORD 

The Extended-Performance 8-cm Ion Thruster and associated 
Simplified Power Processor Unit described in this Supplementary 
Final Report were assembled and evaluated by personnel of Hughes 
Research Laboratories LHRL), Malibu, California. The work was 
done in the Plasma Physics Department, managed by 
Dr. J. Hyman, Jr. The Lewis Research Center supported the work’ 
under NASA Contract NAS 3-22447, 8-CM Ion Thruster 
Characterization. M.E. Mantenieks was the NASA Program Manager. 
The HRL Program Manager, F.J. Wessel, shared the responsibility 
of assembling and evaluating the Simplified Power Processor Unit 
with D.J. Hancock. Other HRL personnel contributing to the 
program were R.L. Poeschel, J.R. Beattie, W.S. Williamson, C.R. 
Dulgeroff, R.R. Robson, M.W. Sawins, A.R. Kramer, D.R. Deane, and 
R.L. Maheux. 

ii 



c 

‘ 1  I 

P .  
I 
1 
I 
I 
8 
I 
c 
I 
J 
I 
I 
I 
I 
I 
1 

SECTION 

1 

2 

TABLE OF CONTENTS 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
THRUSTER TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
A. Cathode- or Keeper-Potential-Biased 

. .  Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
B. Propellant-Diversion Endplate . . . . . . . . . . . .  
C. Shortened Discharge Chamber . . . . . . . . . . . . . .  
D. Main Vaporizer and Plenum . . . . . . . . . . . . . . . .  
E. Cathode-Magnet Assembly . . . . . . . . . . . . . . . . . .  

3 

4 

SIMPLIFIED POWER PROCESSING . . . . . . . . . . . . . . . . . .  
A .  Thruster-Control Requirements . . . . . . . . . . . .  
B. Thruster Control and Sequencing 

Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C. Test Results fo r  the 8-cm Mercury-Ion- 

Thruster SPPU . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

iii 

PAGE 

1 

3 

3 

4 

8 

10 

14 

21 

21 

35 

40 

48 

49 



LIST OF ILLUSTRATIONS 

FIGUBE 

1 IAPS+ configuration: Discharge-keeper voltage, 
V6, and beam current, I,, as a function of 
propellant flow rate, Io H g  . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 W S +  configuration: Discharge specific energy, 
€ 1 ,  as a function of discbarge 1,ropellant 
utilization efficiency, 9H g . . . . . . . . . . . . . . . . . . . . . . . .  

3 W S +  configuration: Diagram of the propellant- 
diversion endplate configuration . . . . . . . . . . . . . . . . . . .  

4 Comparison of thruster performance curves.......... 

5 Diagram of the dual-vaporizer configuration . . . . . . . .  
6 Ion beam current as a function of the ratio of 

main-to-discharge propellant flow rate for various 
discharge currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

7 Discharge specific energy as a function of 
discharge propellant utilization for various 
discharge currents that produce maximum 
beam current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

8 Diagram of the cathode-magnet configuration . . . . . . . .  
9 Performance curves of versus for the 

cathode-magnet and IAPS+ thrusters . . . . . . . . . . . . . . . .  

10 Functional block diagram of .the 8-cm IAPS PPU . . . . . .  
11 DC and ac open loop passive regulation . . . . . . . . . . . . .  

12 Circuit diagram of voltage-regulated supply . . . . . . . .  
13 Typical fixed-current, current-regulated supply 

used for discharge, discharge keeper and 
neutralizer keeper supplies . . . . . . . . . . . . . . . . . . . . . . . .  

14 Typical variable-current, current-regulated 
supply used for discharge and neutralizer 
heater and vaporizer supplies . . . . . . . . . . . . . . . . . . . . . .  

15 SPPU vaporizer heater power supply . . . . . . . . . . . . . . . . .  

iv 

PAGE 

5 

6 

7 

9 

11 

13 

15 

17 

19 

22 

29 

30 

33 

34 

37 



!I  i . 

LIST OF ILLUSTRATIONS (CONTINUED) 

FIGURE PAGE 

16 Simplified PPU-start and failed RTD control 
circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

17 Schematic diagram of the simplified power- 
processing unit (SPPU) ............................. 41 - 

18 Thruster startup sequence with the SPPU . . . . . . . . . . . .  44 

- 19 Recorded thruster startup sequence with the 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  SPPU 46 

I 
I 
1 
I 

V 



LIST OF TABLES 

TABLE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Test conditions for characterizing the 
performance of the dual vaporizer . . . . . . . . . . . . . . .  
Thruster operating parameters at IBI 

Performance comparison of til2 U P S +  and 
cathode-magnet configurations . . . . . . . . . . . . . . . . . . .  
Power-supply specifications of the IAF'S 
8-cm mercury ion thruster PPU . . . . . . . . . . . . . . . . . . .  
Simplified power-supply control 
requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Simplified power processor power supply 
requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Typical thruster power-supply 
requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Power-supply sequencing to achieve 
stable thruster operation . . . . . . . . . . . . . . . . . . . . . . .  

8-cm SPPU control functions . . . . . . . .  i . . . . . . . . . . . .  

Parts count comparison for the 8-cm 
IAPS PPU and SPPU designs . . . . . . . . . . . . . . . . . . . . . . .  

1 
1 
I PAGE 

12 

l6 . 1 

l8 I 
24 

li 
26 

28 1 
36 

36 1 
42 I 

1 
47 

vi 



SECTION 1 

INTRODUCTION 

This report documents work conducted at Hughes Research 
Laboratories from March 1982 through February 1983, under NASA 
Lewis Research Center Contract No. NAS 3-22447. These activities 
build on earlier work conducted under the same contract, which is 
reported in an earlier final report (NASA document No. 
CR-167887).' The present work consisted of two tasks: 
(1) extending the 8-cm thruster performance obtained earlier' and 
(2) simplifying the power processor control unit for the 8-cm 
thruster. By describing these tasks, this supplementary Final 
Report completes the program's documentation. 

In the original effort (August 1980 to October 198l), the 
performance of the Ion Auxiliary Propulsion System (IAPS) 
thruster was improved by altering the thruster operating 
parameters and component hardware. The baseline values (i.e., 
before contract modification) of the IAPS thruster2 included: 

Thrust, T =5 mN 

Specific impulse, I,, = 2900 s 

Ion beam current, 1, = 72 mA 

Thrust-to-power ratio, T/P = 36 mN/kW. 

By the end of the original effort with a modified thruster, 
we had achieved the following improvements (the actual thrust-to- 
power ratio is not quoted because the nonoptimal thermal design 
of the laboratory thruster produces an unrealistically favorable 
comparison) : 

T = 2 5 m N  

I,, = 4300 s 

IB = 310 mA. 

1 
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The first task under the present effort improved those 
performance values to T = 32 mN, I,, = 4062 s ,  1, = 338 mA, and 
T/P = 33 mN/kW (for these measurements, a realistic value of the 
thrust-to-power ratio was available from the data*). Having 
attained these values, we then simplified thesthruster power 
electronics in the second task. For operating the thruster, new 
*power conditioning and thruster-control concepts were developed 
and implemented in a simplified power-processing unit (SPPU). The 
new design substantially reduced the parts count and the 
complexity of the original power processor. To verify these 
concepts, a laboratory-model simplified power-processor unit 
(SPPU) was built to operate an IAPS-type thruster. After 
activation of a single switch, the SPPU provided complete 
autonomous thruster startup and control. 

Results from testing the thruster and SPPU are presented in 
Sections 2 and 3 .  

* These performance data include a correction corresponding to 
additional vaporizer power that would be required in a flight 
thruster. In our laboratory model, the vaporizers were coupled 
too closely to the hot discharge chamber, resulting in 
unrealistically low vaporizer power levels. 

2 



SECTION 2 

TBBUSTEB TESTS 

Thruster modifications described in this section achieved a 
thrust level of T = 32 mN with a specific impulse of Is, = 
4062 s, and a thrust-t--power level of T/P = 33 mN/kW. 
obtaining baseline data with the thruster shell biased 
alternatively at cathode potential and at keeper potential, we 
investigated the following: 

After 

Propellant diversion with different baffles 

Performance with shortened chamber 

Performance of nominal chamber with added plenum and 
vaporizer 

Performance with cathode magnets. 

The test results of these configurations follow. 

A .  CATHODE- OR KEEPER-POTENTIAL-BIASED SHELL 

These Activities began with the thruster modified in the 
manner described below. Its design features include a standard 
IAPS divergent magnetic-field pattern, the discharge-chamber 
magnetic-field strength increased to 15 mT (IAF'S value:  11 mT, 
measured at the downstream end of the cathode polepiece), a 
propellant-diversion baffle of 2.38-cm diameter (IAPS value: 
2.06-cm diameter), small-hole accel grid (SHAG) optics, and heat- 
sunk vaporizers. In addition, a simple flat washer (of suitable 
dimension) that greatly improved access to the cathode-isolator- 
vaporizer assembly replaced the standard IAPS thruster rear 
shield. This design change permitted direct electrical 
connections between the vacuum bulkhead and the thruster 
components, and shortened each thruster disassembly/assembly 
cycle. 

3 



I . .  

In the first test configuration, a MACOR washer electrically 
isolated the discharge-chamber shell from the cathode. This 
isolation permitted the shell to be electrically biased either at 
cathode or keeper potential; the shell bias was selected by a 
switch external to the vacuum chamber. 

Data obtained for these two configurations are shown in 
Figures 1 and 2 .  
keeper voltage, Vg, and beam current, I,, on discharge propellant 
flow rate, IDHg, at fixed discharge current, ID. This figure 
demonstrates the trend to increased Vg and slightly reduced 1, 
for the shell-at-keeper-potential configuration when measured at 
fixed ID and IDHg. Under these test conditions, this trend was 
clear from a decrease in the keeper voltage and slight increase 
in the discharge voltage and, consequently, increased Vg. Also 
noteworthy in Figure 1 is a decrease in the highest obtainable 
beam current for the shell-at-keeper-potential configuration. 

Figure 1 displays the dependence of anode-to- 

Figure 2 compares the performance data of both 
configurations by plotting discharge specific energy, e I ,  as a 
function of discharge propellant utilization efficiency, v i g .  
Data in this figure exhibit a shift in the "kneee1 of the curve 
toward increased € 1  and decreased v i g .  
were also evident in the test results measured at ID = 4 . 5  A ,  
although the data are not displayed in Figures 1 and 2. 

These performance trends 

Our test results reproduced performance trends found in the 
original program. Since a net performance gain was not achieved 
with the shell at keeper potential, the shell was henceforth kept 
at cathode potential. 

B. PROPELLANT-DIVERSION ENDPLATE 

The thruster was reconfigured with a propellant-diversion 
endplate (Figure 3). The standard "dished" endplate was 
inverted, retaining a continuous magnetic circuit; the cathode 
polepiece was shortened, retaining discharge-chamber length and 

4 
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magnetic-field strength; and a flat stainless steel (nonmagnetic) 
endplate was installed to enclose the discharge chamber and 
support the cathode assembly. 
by increasing the transparency of the endplate via wire-mesh- 
covered holes drilled through the inverted iron endplate. In 
some of our testing, a propellant-diversion'baffle was also 
employed. This baffle, also tested in the original program, is 
perforated with three tantalum-mesh-covered apertures. These 

We provided propellant diversion 

apertures redirect some propellant flow away from the baffle gap, 
without reducing plasma baffling. 

Figure 4 displays performance data for three thruster 
configurations: (1) the propellant-diversion-endplate 
configuration with a 2.38-cm-diameter baffle, (2) a propellant- 
diversion endplate with a 2.38-cm-diameter propellant-diversion 
baffle, and (3) a standard IAF'S configuration with the same 
baffle as in ( 2 ) .  Comparing these data indicates that 
configuration No. 1 gives the best performance, and configuration 
No. 2 the worst. 

The data in Figure 4 demonstrate that there is an optimum 
degree of propellant diversion. These data indicate that 
propellant diversion increased the efficiency of propellant use 
(at 1, = 3 A) by approximately 20% to a value ? A g  = 0.89, 
compared with a value vAg = 0.69 for the standard configuration 
without propellant diversion (configuration No. 2 ) .  For  these 
two designs the discharge specific energy remained essentially 
unchanged at a value € 1  N 425 W/A. Such improvements confirmed 
-the need for adequate propellant diversion at extended- 
performance conditions and demonstrated the simplicity of our 
approach. 

C .  SHORTENED DISCHARGE CHAMBER 

We tested a configuration that reduces discharge chamber I 
length. The length of the chamber was adjusted to a value two- 
thirds that of the standard LAPS discharge chamber. While 
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testing this configuration, we found an unstable discharge over a 
range of discharge current ID < 4 A and a discharge flow rate 
range of 200 mA < IDHo < 550 mA. Although this instability was 
partially eliminated with a 5 4  resistor connected in series with 
the discharge power supply, the shortened chamber was abandoned. 

D. MAIN VAPOBIZEB AND PLENUM 
m 

We next modified the thruster by adding a vaporizer that 
supplied propellant to the discharge, independent of that 
supplied by the discharge vaporizer. Because this configuration 
exhibited the best performance obtained under this program, we 
refer to it as the I'IAPS+'' configuration. In this configuration 
(Figure 5 ) ,  where the vaporizer is labeled t'maintl vaporizer, a 
gas plenum near the thruster endplate injects propellant into the 
discharge. The gas plenum was fabricated from 0.32-cm-diameter 
thin-wall stainless steel tubing formed into a circle. The 
downstream surface of the plenum was perforated with 36 holes, 
0.51 mm in diameter, to distribute propellant uniformly into the 
discharge. 

We employed the following techniques in evaluating the dual- 
vaporizer discharge chamber and thruster: the discharge current, 
ID, and the discharge propellant flow rate, IDHg, were fixed as 
the main propellant flow rate, I M H g ,  was varied and thruster 
performance parameters were recorded. Table 1 lists the values 
of ID, I D H g ,  and I, , ,  for these tests. Our results are displayed 
in Figure 6 ,  where beam current 1 s  is plotted as a function of 
the ratio IMH,/IDHg. 
current I B I M A x  (denoted by arrows) obtained at fixed ID, we can 
determine the best range of values for the discharge propellant 

By comparing the values of the maximum beam 

flow rate. The greater values of IBIMAx are identified with the 
best thruster performance. In general, the best thruster 
performance occurs when the discharge-propellant flow rate is a 
small part of the main propellant flow rate. This characteristic 
(i.e., best performance with I D H ,  << I, , ,)  recalls that of the 
NASA/Hughes 30-cm thruster. 

10 



Figure 5. Diagram of t h e  dual-vaporizer configuration. 
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Table 1. Test Conditions for Characterizing the 
Dual-Vaporizer Thruster 

I . .  

3 

4 

Discharge Propellant 
Flow Rate, I D H S ,  mA 

39 

47 

81 

100 

47 

76 

69 

165 

47 

76 

116 

226 

39 

44 

69 

95 

12 

Ratio of Flow Rates, 
. IMH~/IDH~ 

2.43 to 3.27 

1.74 to 2.40 

0.35 to 1.12 

0.20 to 0.54 

2.34 to 3.15 

1.49 to 1.89 

1.59 to 2.22 

0.20 to 0.37 

4.8 to 4.94 

2.3 to 3.53 

0.97 to 1.97 

0.15 to 0.79 

7.79 to 8.78 

6.79 to 8.78 

4.25 to 4.74 

2.34 to 3.58 
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Figure 6. Ion beam current as a function of the 
ratio of main-to-discharge propellant 
flow rate for various discharge currents. 
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In controlling the 8-cm thruster or the 30-cm thruster at 
fixed discharge current, a decrease in the value of IDHg 

increases the discharge voltage, V D ,  without affecting Ig. An 
increase in I,,, also increases the value of 1, without 
substantially affecting V D .  This result suggests that control 
loops like those in the 30-cm thruster can also be used in the 
dual-vaporizer 8-cm thruster. 

In Figure 7, we plot versus q H s  for the four curves of 
Figure 6 displaying the best dual vaporizer performance. This 
figure shows the knee of the curve, for all values of ID, 
occurring at the values - 350 W/A and 0.9. These data 
indicate that the thruster efficiencies represented by qAg and 
are essentially constant over a wide range of discharge currents. 
In the baseline 8-cm thruster with a single vaporizer, the 
thruster performance decreases as the discharge current is 
increased; fo r  example, at ID = 4 . 0  A ,  the corresponding values 
are € 1  N 450 W/A and v i o  < 0.8. 
operating parameters measured at IslMAX and denoted in Figure 7 
by arrows. 

.. 

Table 2 lists the thruster 

The data in Table 2 under the ID = 4 . 0  A heading are the 
best obtained under this program for the IUS+ thruster. 
However, we still performed one last test with a cathode-magnet 
assembly. 

E. CATHODE-MAGNET ASSEMBLY 

The use of a cathode magnet, wL :h is diagrammed in 
Figure 8, was the last thruster modication test that we 
completed. In this design the cathode and keeper were located 
within the discharge chamber and surrounded by a cylindrical 
cathode magnet. This structure was composed of 12 paraxial 
magnets arranged in a ring around the cathode. The magnet array 
was terminated downstream in a magnetic polepiece that shaped the 
magnetic field near the cathode. This cathode-magnet arrangement 
resembles that used in the 30-cm-diameter ring-cusp thruster 
which recently demonstrated discharge specific energies in the 

1 
d 

I 
1 

a 
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0.7 0.8 0.9 

DISCHARGE PROPELLANT UTILIZATION, 7)'Hg 

Figure 7. IAPS+ configuration: discharge specific 
energy as a function of discharge propellant 
utilization for various discharge currents 
that produce maximum beam current. 
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Table 2. W S +  Configuration Thruster Operating 
Parameters at I B l M A X  

Discharge voltage, VD (V) 

Anode-to-keeper voltage, Vg (V) 

Discharge keeper current, IDK (mA) 

Discharge propellant flow rate, 
I D H ~  (d e 4  

Main propellant flow rate, 
I M H ~  (d e d  

Screen voltage, Vs (kV) 

Screen current*, Is (d) 

Accel voltage, V, (V) 

Accel current IA (mA) 

Discharge specific energy, 
€ 1  W/A) 

Discharge propellant utilization, 
)?Hg 

Specific impulse, I,, ( s )  

I'hrust, T (mN) 

Discharge Current, 1, 

1.0 A 

37.6 

30 

100 

39 

101 

1.2 

120 

-300 

0.7 

313 

85 

281 5 

8 

2.0 A 

31.0 

26.2 

50 

76 

134 

1.5 

187 

-300 

1.3 

333 

88 

3254 

14 

3.0 A 

31.3 

28.5 

50 

48 

232 

2.0 

261 

-300 

1.5 

360 

93 

3967 

23 

4.0 A 

29.8 

27.4 

50 

44 

341 

2.4 

338 

-400 

1.9 

355 

87 

4062 

32 

For a given discharge current, parameters were adjusted to obtain 
the largestyalue of screen current; the values of I, therefore 
correspond to I b J m a x .  
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Figure 8. Diagram of t h e  cathode-magnet configuration. 
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N 100 W/A range. The 8-cm thruster, however, does not share 
the 30-cm thruster features of a high-field-strength ring-cusp 
geometry. 

Figure 9 compares performance curves of versus q i g  for 
both the cathode-magnet thruster and the IAPS+. thruster 
(described in Section 2-D). This figure indicates that 
performance in the cathode-magnet configuration,declined when 
compared wit5that of the U P S +  configuration. Nevertheless, our 
first effort with this cathode-magnet configuration might benefit 
from design revision. Table 3 compares the performance 
parameters for the U P S +  and cathode-magnet thrusters. 

87% 

350 W/A 

33.0 mN/kW 

Table 3. Performance Comparison of the IAPS+ and 
Cathode Magnet Configurations 

82% 

430 W/A 

32.7 mN/kW 

Performance Parameter 

Thrust, T 

Specific impulse, I,, 

Total input power, P, 

Total thruster efficiency, 
'11 

Discharge propellant 
utilization efficiency, v A g  
Discharge specific energy, 

Thrust-to-power ratio, T/P 

IUS+ 
Cathode Magnet 
Configuration 

32 mN 

4062 s 

970 W 

68% 

17 mN 

3484 s 

520 W 

59% 

SUMMARY 

Our work has shown that the best performance (Table 2, 
1, = 4 . 0  A) is obtained with the following: 

IAPS+ thruster 

Shell at cathode potential 
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Figure 9. Performance curves of versus 
for +,he cathode-magnet and IAPS+ t l k u s t e r s .  
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Standard discharge chamber 

Standard baffle 

Additional plenun and vaporizer. 

These results were presented in November 1982. A detailed 
account of the thruster performance obtained under the original 
contract is available in a separate report.' 

Following the thruster improvements described here, we 

investlgated the simplified power processing unit. 
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SECTION 8 

SIMPLIFIED POWER PROCESSING 

We have designed a simplified power-processing unit (SPPU) 
for the 8-cm mercury ion thruster. Compared with the existing 
power-processing unit (PPU) used in the NASA/Hughes Ion Auxiliary . 

Propulsion Subsystem (IAPS),  this SPP'.' design provides a tenfold 
reduction in parts count, a decrease in system mass and cost, and 
improved reliability. 

In this section, we discuss the design considerations 
underlying the SPPU design. We present specific thruster-control 
and thrust-level accuracy requirements that allow redesign of the 
PPU power supplies and control electronics for relaxed power- 
supply regulation and passive-control techniques. A modular 
approach to power-supply design further reduces the overall SPPU 
complexity. In addition, our method allows for a single power- 
supply design in all current-regulated power supplies with only 
slight component variations. In the remainder of this section, 
we describe a typical PPU subsystem, review the thruster-control 
requirements and previous simplification concepts, present the 
specific techniques employed to simplify the PPU, and discuss its 
use with an 8 - c m  thruster. 

A .  THRUSTER-CONTROL REQUIREMENTS 

The operating and control requirements of all ion-thruster 
subsystems are highly similar: the larger-diameter thrusters, 
besides operating at greater power levels, require extra levels 
of PPU control due to the design necessity of an extra propellant 
injector and discharge-impedance adjustment. For simplicity, the 
discussion will be limited to the characteristics and 
requirements of the 8-cm mercury ion thruster. 

The PPU controls the entire subsystem operation and contains 
the functional subunits displayed in Figure 10. It consists of a 
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Figure 10. Functional block diagram of t h e  8-cm IAPS PPU. 
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Digital Control and Interface Unit (DCZU), and a Power 
Electronics Unit (PEU). The PPU conditions and regulates the 
solar-array power and supplies precisely controlled power to the 
thruster for propellant flow, ion generation, ion-beam 
acceleration, and ion-beam neutralization. The DCIu sequences 
and controls the output power of the PEU for thruster ON, IDLE, 
‘and OFF conditions. The DCJJ also corrects abnormal thruster 
operating modes, provides telemetry signals indicating the status 
of each thruster power supply and gimbal orientation, implements 
ground-station telemetry for revised thruster operation, and 
drives the thrust-vectoring gimbal. 

To achieve such control, the PEU is comprised of nine 
independent thruster power supplies, each of which is controlled 
by the DCIU. Table 4 displays the characteristics of the power 
supplies used in the existing IAPS 8-cm thruster subsystem PEU. 
Each power supply has multiple operating setpoints and highly 
regulated output power. The DCIU is a microcomputer that stores 
the thruster-control algorithms in read-only memory and contains 
random-access memory to store ground commands, thereby allowing 
modification of the thruster-operating characteristics. 

The IAPS power-processing approach accommodates the 
experimental goals of the IAPS mission; these goals require a 
high level of system flexibility and the capability to regulate 
thrust with high precision. Because of these requirements, the 
IAPS PPU is highly complex and has a large parts count. For 
actual stationkeeping application, however, this level of 
flexibility and precision is not needed. The simplifications 
that we describe in the following sections address the considered 
elimination of those features of the IAPS PPU that would be 
unnecessary in a future workhorse-thruster environment. 

1. Simplification of Power Processor Unit 

To simplify the interface requirements, various approaches 
have been suggested, including extending the thruster performance 
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Table 4 .  Power Supply Specifications of the 
8-cm Mercury Ion Thruster PPU 

IAPS 

1. Discharge 
vaporizer 
.heater 

2. Neutralizer 
vaporizer 
heater 

3 .  Discharge 
cathode 
heater 

4 .  Discharge 
keeper 

5. Discharge 

3 .  Screen 

7 .  Accel 

3 .  Neutralizer 
cathode 
heater 

3 .  Neutralizer 
keeper 

Function 

Propellant 
Flow 

Ion 
Generation 

Ion Beam 
Accel- 
eration 

Ion Beam 
Neutrali- 
zation 

Nominal 
Power 

5 V at 
2 A  

2 V at 
1 A  

6 V at 
at 3 A 

15 V at 
0.36 A 

40 V at 
0 . 5  A 

1180 V at 
0.072 A 

-300 V at 
0.001 A 

6 V at 
3 A  

20 V at 
0.36 A 

2 4  

Regulation 
Type and *% 

I, 5 

I, 5 

I, 5 

I, 3 

Type 
Control 

8 setpoints 
and loop con- 
trol with D/A 
vir iabl e 
reference 

Variable ref- 
erence and 
loop control 
with D/A 
var i ab 1 e 
reference 

8 setpoints 

4 setpoints 

D/A variable 
reference 

Single 
s e tpo i n t 

Single 
setpoint 

8 setpoints 

4 setpoints 



to reduce the number of thrusters and, hence, the number of PPUs 
required for a given mission'; reducing the number of thruster- 
power supplies by multiplexing a single power supply to perform 
multiple power functions'; relaxing the requirements on power- 
supply regulation to expand the range of circuit designs that may 
be used for simplification'; and eliminating unnecessary 
thruster-control loops. 

If a decrease in thrust-system flexibility is acceptable, a 
major reduction in the interface-control requirements is possible 
by minimizing the number of operating setpoints and eliminating 
unnecessary control loops. Ideally, an ion thruster should be 
operated in two modes: OFF and ON, as in chemical propulsion. 
This approach would eliminate the requirement for variable 
output-thrust levels and reduce the power-supply control 
requirements. Table 5 lists the controls that we believe are 
needed in a simplified thrusting environment; we have 
successfully incorporated this control scheme into the SPPU. As 
shown there, all feedback loop control is eliminated and the 
power-supply setpoints are reduced to simple ON/OFF and START/RUN 
control. In this approach, a stable ON condition is reached by 
sequencing the thruster power supplies as one would in manual 
operation of a baseline thruster. 

Another way of simplifying control requirements is to 
eliminate digital command of analog control loops. Digital 
commands used in the IAPS subsystem require a high electronic 
parts count because of analog-to-digital (A/D) and digital-to- 
analog (D/A) signal processing. 

We can simplify the interface-power needs by relaxing the 
power-supply regulation (and ripple) requirements and by 
utilizing integrated circuits and state-of-the-art power-supply 
designs. The need to maintain stable thruster operation within a 
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Table 5. Simplified Power-Supply Control Requirements 

~~ 

Power Supply Operating Control I 
Main-propellant flow 

Discharge-propellant flow 

Discharge-cathode heater 

Discharge keeper 

Discharge 

ON/OFF temperature 

START/R~J/OFF temperature 

START/RUN/OFF 

ON/OFF 

ON/OFF 

Screen 

Accel 

ON/OFF 

ON/OFF 

Neutralizer-propellant flow 

Neutralizer-cathode heater 

Neutralizer keeper 

START/RUN/OFF temperature 

STAFtT/RUN/OFF 

ON/OFF 

predetermined level of thrust accuracy determines power-supply 
regulation. This is illustrated by examining the thrust equation 
for  an ion thruster: 

T = 1 .44  rB ( v ~ M ~ )  1/2 

where 

e T = Thrust, mN 

e I, = Ion beam current, A 

e V, = Beam voltage, V 

e M p  = Propellant atomic mass, AhiU. 

To maintain a given thrust-level accuracy, I, and V, must be 
regulated within certain limits. These limits are translated 
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into design requirements for the power supplies which directly 
affect the values of these thrust parameters. In chemical-thrust 
systems, the beginning-of-life (BOL) to end-of-life (EOL) thrust 
variation can approach or exceed 10% of the BOL value. By 
comparison, conventional ion-thruster subsystems can maintain a 
thrust level within 1% of the BOL value for the rated ion- 
thruster lifetime (typically_>,lO,OOO h ) .  By analogy with 
chemical propulsion, the thrust accuracy of ion thrusters can be 
reduced considerably. 

After thruster testing and performance evaluation, we have 
established that 8-cm thruster systems will perform well with the 
reduced power-supply requirements presented in Table 6 .  Reducing 
the thrust accuracy and regulatio. 2quirements also permits a 
wider range of circuit designs and electronic components. For a 
circuit design used in the 8-cm thruster simplified power- 
processor unit (SPPU), see the current-regulated circuits shown 
in Figure 11. The ac circuit [Figure ll(b)] is energized by a 
20-kHz square wave input signal and contains a series impedance, 
Z, larger than the load impedance, Zlord. Therefore, the load 
impedance can vary over a wide range without'significantly 
affecting the regulated current, I. This is illustrated by 
considering the circuit equation for this design, 

c I =  'input 
+ 'load 

If, for example, V i n p u t  = 100 v, and z = 90 n = 10 x Zlord, then 
for a 100% variation in Zload, Zlosd = 10 n 10 n, the circuit 
current will vary by only lo%, I = 1.0 A * 0.1 A. 

u 
1 
I 
I 

As an example of a voltage regulated supply, the voltage- 
regulated circuit (Figure 12) is energized by a dc input voltage 
and is actually a dc-dc inverter. This inverter achieves voltage 
regulation by pulse-width modulating the transformer primary 
drive power. Modulation occurs when we maintain a constant 
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Table 6. Simplified Power Processor Power Supply Requirements 

Power 
Supply 

Discharge 
cathode 
heater 

Discharge 
keeper - 

Discharge 

Accel 

Screen 

Neutralizer 
keeper 

Neutralizer 
cathode 
heater 

Neutral i z er 
vaporizer 
heater 

Discharge 
vapor izer 
heater 

Voltage 

10 v 

200 V/15 V 

50 V/25-35 V 

-800 V 

2.5 kV 

200 V/15 V 

10 v 

10 v 

10 v 

Current 

1 A , 5 A  

0.25 A 

O t o 5 A  

5 d  

300 d 

0.5 A 

1 A , 5 A  

1.5 A, 5 A 

O t o 5 A  

28 

Regulation, 
*% 

20 

20 

1 

10 

20 

20 

20 

5 

5 

Set . 

Points Control 

Fixed 

Fixed 

Var i ab1 e 

Fixed 

Fixed 

Fixed 

Fixed 

Fixed 

Variable 
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Figure 12. Circuit diagram illustrating simplification 
obtained by combining voltage-regulated 
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voltage across the voltage-sensing coil, a process which, in 
turn, tracks the voltage delivered to the load. In laboratory 
tests of this circuit, the output voltage varied by less than 5% 
for a 50% variation in the load impedance. This capability was 
achieved with a single integrated circuit whiqh monitored the 
feedback signal and adjusted the pulse width of the drive 
transistors accordingly. The circuits shown in Figure 12 
demonstrated efficiencies (output power divided by input power) 
that approached or exceeded 90%. Such efficiency compares 
favorably with that of existing power-processing practice. 

Another approach to simplifying the PPU is to combine power 
supplies whenever possible, as the circuit in Figure 12 
illustrates. The outputs of two or more power supplies (screen 
and accel) are combined onto a single drive transformer. When 
the output-power requirements track one another as they do for 
the screen/accel and cathode-heater/vaporizer-heater power 
supplies, this technique works well. Combining power supplies in 
this way further reduces the interface-control requirements, 
since a single control signal now regulates multiple-power 
outputs. 

output power and performs its own output regulation, the input 
power for the screen supply is derived directly from the solar 
panel bus voltage. This derivation reduces the power handling 
requirements of the housekeeping dc-dc regulator and dc-ac 
inverter and minimizes power losses in those supplies. 
Independently operating the screen supply also permits a much 
higher operating frequency to minimize the weight and size of the 
required magnetic and capacitive components. Isolated dc output 
power is supplied to provide both the 2500-V screen output and 
the 800-V accel output from the same output transformer. That 
transformer provides automatic tracking between the two supplies. 
Current limiting to protect against thruster shorts is provided 
by sensing the FET switch current and reducing the gate drive 

Since the screen supply controls about 70% of the entire SPPU 
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pulse width to maintain safe peak current levels during the 
shorting interval. Controlled turn-on (soft start) can be 
accomplished in the same manner. 

Another way to simplify the power supply is through a modular 
multipurpose circuit design requiring only simple adjustments in 
the power supply operating point or component substitution. This 
approach suits the current-regulated power supply designs and 
designs for thrusters of various diameters and power 
requirements. As presented in Table 4,  a mercury ion thruster 
requires seven current-regulated power supplies for proper 
operation. These supplies can all be designed using the 
approaches s h w n  in Figure 11. Three supplies - the discharge, 
discharge keeper, and neutralizer keeper - can be operated 
directly from the ac power source with no additional switching or 
control. The actual design requires only the addition of an 
isolation transformer, output rectifiers, and a filter capacitor 
to provide dc voltage. Figure 13 shows a typical detailed 
schematic of the circuit used for these three supplies. 

. 

However, discharge and neutralizer cathode heater and dis- 
charge and neutralizer vaporizer heater supplies all require some 
variable power, which requires a controllable ac switch. The 
block diagram of a typical variable-current-regulated supply is 
presented in Figure 14. The basic inductor-controlled, current- 
regulated technique described previously is used for these 
supplies with the additional capability to turn OFF the power. 
By switching the power ON and OFF at a relatively low rate (50 to 
100 Hz) and controlling the duty cycle of the switch, any power 
level required by the thruster can be generated. 
the long thermal time constants of thruster heaters and 
vaporizers (several seconds), 50- to 100-Ha power pulses are 
quite effectively smoothed to provide an average dc power. 

As a result of 
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Figure 13. Typical fixed-current, current-regulated 
supply used for discharge, discharge keeper 
and neutralizer keeper supplies. 
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Figure 14. Typical variable-current, current-regulated 
supply used for discharge and neutralizer heater 
and vaporizer supplies. 
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2. Thruster Interface-Control Requirement 

The power processor must interface between raw dc power 
obtained from the spacecraft energy sources - solar panels, 
batteries, or generators - and the required thruster operating 
load function. These thruster functions include propellant 
injection, ion generation and acceleration, and ion-beam 
neutralization. For these functions the power processor must . 
sequence and adjust the various power supply outputs as demanded 
by the thruster dynamic operating conditions. Typical thruster 
functions and the supplies required to control those functions 
are listed in Table 7. These supplies must be controlled and 
sequenced in the proper order to start up and run the thruster 
very stably and efficiently. Table 8 illustrates the typical 
power-supply sequences required for such operation. 

B. THRUSTER CONTROL AND SEQUENCING TECHNIQUES 

1. Vaporizer Duty Cycle Operation 

Vaporizer flow rate is controlled by sensing vaporizer 
temperature and adjusting the power to the vaporizer to maintain 
its temperature. The basic variable-current regulation technique 
described previously and shown in Figure 15 is used for supplying 
vaporizer heater power: 

e Startup with high power (85% duty cycle) until START 
temperature is reached. 

0 Lower duty cycle to maintain START temperature. 

Upon keeper ignition: 

e Reduce START temperature to RUN temperature. 

Reduce (automatically) duty cycle to maintain RUN 
temperature. 

The cathode heater is controlled with the same duty cycle 
modulation technique, except the START and RUN power levels are 

35 



, _. I' 

Operating Requirement 

Propellant injection 

Ion generation 

Ion acceleration 

Table 7. Typical Thruster Power-Supply Requirements 

Power Supplies Required 

Neutralizer-vaporizer-heater 
supply 

supply 
Discharge-vaporizer-heater 

Discharge-keeper supply 

Discharge supply 

Screen supply 

Accel supply 

Ion-beam neutralization 

Cathode or discharge 
ignition 

Neutralizer-keeper supply 

Neutralizer-cathode-heater 
supply 

supply 
Discharge-cathode-heater 

Table 8 .  Power-Supply Sequencing to Achieve 
Stable Thruster Operation 

Initiate Plasma Discharges by Turning On: 

Neutralizer and discharge cathode heaters 
(initiate discharge ignition) 

Neutralizer and discharge-vaporizer-heater supplies 
(to start flow rates) 

Neutralizer and discharge keeper supplies 

Discharge supply 

Stabilize Plasma Discharges by: 

Reducing neutralizer and discharge cathode heaters 
(to run levels) 

Reducing neutralizer and discharge-vaporizer-heater 
supplies (to run flow rates) 

Extract Ion Beam by Turning On: 

Screen and accel supplies 
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fixed power level set points. As with the vaporizer supplies, 
the power level, from start to run levels, is cut back upon 
keeper ignition. 

High voltage power supplies (screen and accel) are maintained 
OFF until both keepers and the discharge have ignited and the 
discharge voltage has dropped below 50 V. The high voltage is 
then turned ON and slowly (0.5 s )  ramped up to full voltage. If 
an overcurrent condition or plasma ark (short) occurs or one of 
the keepers extinguishes, the high voltage is automatically shut 

* OFF and the high-voltage turn-ON sequence is repeated. The 

sequence will recycle continuously if a short is maintained on 
either high voltage supply. 

2 .  Failed RTD Temperature Sensor Control Technique 

If an RTD temperature sensor fails, the control circuitry 
switches to fixed-set-point or fixed-duty-cycle control. The set 
points are chosen under average conditions to give the required 
duty cycle for producing the START temperature during startup and 
the RUN temperature after keeper ignition. 

Figure 16 shows the basic cathode-heater and vaporizer-heater 
control circuit used for both the discharge and neutralizer 
sections. Under normal conditions, the RTD acts as part of a 
bridge circuit, which produces outputs in the 1 to 3 V range. 
Modulator U,, amplifies these signals and controls the duty cycle 
modulator U,, which, in turn, controls the ac power switch. When 
an RTD fails, it becomes an open circuit and allows the bridge 
output to rise to 10 V, which disables modulator U2, and closes 
the switch contacts x2 and x3 in U,. The vaporizer duty cycle is 
then fixed at the levels set by R45 and R4,. 

3. Keeper and Discharge Supplies 

In addition to regulating the current, the two keeper 
supplies and the discharge supply must provide high voltage 
(-200 V) for igniting the plasma arc during the start phase. If 
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we use an output transformer with a 2:l step-up ratio, the output 
voltage in the open circuit condition (typical keeper load before 
ignition), peaks to 200 V or more. 
current flowing, the output voltage drops to a typical keeper 
voltage of 15 V because of the high series impedance exhibited by 
the current-regulating choke. If a keeper extinguishes, the 
keeper current goes to zero. 
automatically return to the high voltage state ready for re- 
ignitioh. 

form. Each major control line is identified (CL-1 through 
CL-12), and the analog control function with which it is 
associated is described. A more detailed analysis of each 
control loop is given in Table 9 .  

After ignition, with keeper 

The keeper voltage will 

Figure 17 illustrates a complete SPPU system in block diagram 

C. TEST RESULTS FOR TEE 8-CM MERCURY-ION-THRUSTER SPPU 

We designed and built a laboratory-type SPPU for the 8-cm- 
diameter mercury-ion thruster, incorporating all of the circuit 
topologies described above. This SPPU provided the power and 
control requirements for the 8-cm thruster and achieved our 
program goals: 

0 A one-switch, hands-off thruster startup 

0 Automatic sequencing to stable operation when the 
thruster was started from a full OFF condition. 

Tests were conducted under three conditions: (1) thruster at 
room temperature (TSHELL = 23OC), (23 thruster at warm 
temperature (TSHELL = 15OOC) , and (3) thruster at nominal 
operating temperature (TSHELL = 3OOOC). These conditions 
simulated a limited range of potential thruster operating 
temperatures or environmental conditions. We demonstrated the 
capability for complete thruster control without any complicated 
software or digital commands (as used in the IAPS). 
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I,/. Schematic diagram of the simplifed power-processing 

unit (SPPU). (SPPU control functions CL-1 to CL-12 
are defined in Table 9.) 
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Table 9 .  8-cm SPPU Control Functions 

CL-1 

CL-2 

CL-3 

CL-4 

CL-5 

CL-6 

CL-7 

CL-8 

CL-9 

CL-10 

CL-11 

CL-12 

Discharge-cathode-heater power is switched from START 
duty cycle (-85%) to RUN duty cycle (-60%) upon 
discharge-keeper ignition. 

Discharge-propellant flow rate is switched from START 
flow rate to RUN flow rate upon discharge-keeper 
ignition. 

Upon RTD failure (open-circuit), the discharge- 
propellant flow power supply is switched from fixed 
temperature control to fixed duty cycle control. 

In failed RTD condition, the discharge-propellant flow 
power supply is switched from the START duty-cycle 
setpoint (-85%) to the RUN duty-cycle setpoint (-60%). 

The discharge-propellant flow rate is maintained at 
either the START or RUN flow rate by varying the duty 
cycle of the discharge propellant flow power supply. 

High-voltage supplies (screen + accel) are turned OFF 
momentarily if an overcurrent is sensed in either the 
screen or accel power supplies. High voltage is 
periodically turned ON to check whether the overcurrent 
condition still exists. 

High-voltage power supplies are turned OFF until the 
neutralizer keeper ignites following neutralizer keeper 
extinction. 

Neutralizer-cathode-heater power is switched from START 
duty cycle (-85%) to RUN duty cycle (-60%) upon 
neutralizer keeper ignition. 

Neutralizer propellant flow rate is switched from START 
flow r a t e  to RUN flow rate upon neutralizer keeper 
ignition. 

Upon RTD failure (open circuit), the neutralizer- 
propellant flow power supply is switched from fixed 
temperature control to fixed-duty-cycle control. 

In failed RTD condition, the neutralizer-propellant flow 
power supply is switched from the START duty-cycle 
setpoint (-85%) to the BUN duty-cycle setpoint (-60%). 

The neutralizer-propellant flow rate is maintained at 
either the START or RUN flow rate by varying the duty 
cycle of the neutralizer propellant flow power supply. 
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The startup algorithm of the SPPU follows the power supply 
sequencing steps illustrated in Table 8 .  The response of the 
various thruster operating parameters during an idealized startup 
sequence is graphically presented in Figure 18 to illustrate the 
concepts of the startup algorithm. 

As power is applied to the SPPU, all power supplies energize 
‘simultaneously (time = to in Figure 18), except for the combined 
screen/accel supply. During this startup phase, the (neutralizer 
and discharge) cathode heaters and vaporizer-heater power 
supplies operate at -85% of their maximum output power levels. 
This percentage is achieved by modulating the duty cycle of the 
various ac switches. Meanwhile, the discharge and 
(neutralizer/discharge) keeper power supplies go to their full 
open-circuit output voltage. 

As the preset START temperatures of the vaporizers (discharge 
and neutralizer) are reached (t = t, -A for the neutralizer 
vaporizer and t = t, -A for the discharge vaporizer), the duty 
cycles of the ac switches are gradually reduced. This reduction 
limits the power delivered to the vaporizer heaters and maintains 
a fixed vaporizer (START) temperature. 

As the keeper-plasma discharges ignite (at t = t, for the 
neutralizer keeper and t = t, for the discharge keeper), the duty 
cycles of the respective cathode-heater and vaporizer power 
supplies are immediately reduced to preset RUN values. Such 
values limit the supply outputs to about 60% of their maximum 
output power levels. This reduction in output power lowers the 
vaporizer temperatures to the RUN values required for optimal 
thruster performance. 

Following ignition of the discharge keeper, the discharge 
current increases, resulting in a fully established discharge 
plasma and a gradually decreasing discharge voltage. 
preset discharge voltage is reached (typically 50 V), the 
combined screen/accel power supply energizes and the ion beam is 
extracted. If either of the keepers extinguish, the screen/accel 

When a 
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F i g u r e  18. I d e a l i z e d  t h r u s t e r  s t a r t u p  s e q u e n c e  
w i t h  t h e  SPPU. 
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power supply is immediately turned OFF and inhibited until the 
(keeper) discharges are reestablished. This combined 
screen/accel power supply is also turned OFF and recycled in case 
an overcurrent condition occurs in the ion-extraction electrodes. 

Starting with the thruster shell at room temperature 
(TSHELL = 23"C), the transition to maximum-ion-beam conditions 
was achieved within li min, following application of power to the 
SPPU . .. 

With the thruster shell at normal operating temperature 
(TSHELL = 3OO0C), the transition to maximum ion-beam current was 
achieved within 5 min. This temperature dependence is a common 
characteristic of mercury thrusters (as opposed to inert-gas 
thrusters): during startup, cold surfaces within the thruster 
cause mercury vapor to condense; as the thruster-shell 
temperature increases, the propellant reevaporates. The net 
effect of propellant condensation is a brief period of 
inefficient ("flooded") thruster operation. This problem is 
avoided in inert-gas thrusters since commonly used inert-gas 
propellants (argon, xenon, and krypton) do not condense at 
temperatures typical of the space environment. Figure 19 records 
pertinent thruster parameters during an actual startup sequence 
(as opposed to the conceptual sequence illustrated in Figure 18). 

The overall simplicity of our SPPU design is illustrated by 
comparing the parts count for this unit with that of the PPU in 
the present 8-cm IAPS thruster subsystem. Table 10 displays the 
parts count for the various subsections of these two power- 
processor units. As illustrated, we reduced the number of elec- 
tronics parts by a factor of ten. The parts count attributed to 
the remaining two subsections of telemetry/power conditioning and 
filtering are only estimates for the SPPU, since these subsec- 
tions were not made or installed in the SPPU hardware described 
here. Based on our arguments for three channels of telemetry and 
our circuit designs for power filtering/conditioning 
applications, these estimates demonstrate the potential parts 
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Figure 19. Actual thruster startup sequence w i t h  SPPU, 
beginning at ambient room temperature (-300 K). 
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count reduction for a Itcomplete" SPPU. Compared with the IAPS 
PPU, our SPPU has a factor of ten fewer parts. A discussion of 
the preceding results is included in an AIAA paper. 7 

Subsection 

Power electronics 

Telemetry' - 

Power filtering and conditioning 

T o t a l  

Table 10. Parts Count Comparison for the 8-cm 
IAPS PPU and SPPU Designs 

Approximate 
Parts Count 

IAPS PPU SPPU 

1690 174 

238 36 

367 50 

2295 260 

I I 
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SECTION 4 

CONCLUSIONS 

In this Supplemental Final Report, we have: 

Characterized the baseline 8-cm IAPS thruster 

0 Incorporated modifications to extend the performance 
capabilities of the 8-cm IAPS thruster 

Characterized the modified 8-cm thruster 

0 Simplified the IAPS PPU. 

Prior to the modifications described in this report, the 
maximum IAPS thruster performance was determined to be T = 17 mN, 

Isp = 2300 s, and 1, = 0.215 A .  By incorporating a plenum and 
second vaporizer, we increased performance tb r = 32 mN, Isp = 

4062 s, and I, = 0.310 A. We believe the IAPS thruster can be 
upgraded to operate at higher thrust levels. Although testing a 
cathode magnet did not improve the thrust levels, we feel that 
another design might further improve the performance. 

We have dramatically simplified the PPU design and parts 
count while retaining essential subsystem control over the 
thruster operation. Our design fo r  a simplified power-processing 
unit will greatly reduce the cost and increase the reliability of 
ion-thruster subsystems, thereby making them more competitive 
with chemical subsystems. Many of the concepts a n d  results 
reported here are applicable to ion-thruster subsystems comprised 
of larger diameter mercury or inert-gas thrusters. 
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